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A new approach is proposed for solving problems with moving boundaries. Assuming spherical symmetry, 

wave phenomena are considered in the case of a surface, of arbitrary initial radius, moving in a 

compressible medium at a velocity governed by an arbitrary law. Formulas suitable for solving both the 

inverse and direct problems are obtained. 

AT~EMFTS to allow for the mobility of the boundaries in wave-equation situations have hitherto been confined 
mainly to cases in which the boundary conditions are satisfied on the moving boundaries (the direct problem) 
[l, 21. The method used in [l] reduces such situations to an infinite system of first-order linear differential 
equations. In the case considered below an additional condition is specified not at the moving boundary but at a 
fixed point of the wave zone (the inverse problem), and the problem is to determine the functions of interest at 
other points, including the moving boundaries. This is to be done without knowledge of the law governing the 
variation of the boundaries, which is also to be determined. In addition, the additional condition may even be 
non-linear. 

The essence of the approach is to determine the relationship between the values of the unknown functions at 
the moving boundaries and at other points taking into account the actual delays [3]. In some cases, such as a 
moving cylindrical surface 141 or a penetrable spherical boundary (51, explicit formulas can be derived for the 
functions. 
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1. LINEAR ADDITIONAL CONDITIONS 

Consider the problem 

‘Ptt - a%f+,, - 2a3r-‘ql,, = 0, r > R (t) (1.1) 

cPt (r, 0) = cp (r, 0) = 0, R (0) = r0 (1.2) 

Pit lr=rl = P = f 0 - h - roV4 (1.3) 

--cPt ir_R(t) = LJ (1.4) 

where t is the time, R(t) and ro, r, rl are the coordinates of the moving boundaries, the initial and current 
points of the wave zone, respectively, and a and p are constants. If conditions (1.3) are known and we have to 
reconstruct the values of the unknown function cp and its derivatives at any other points, including the moving 
boundaries, this is the inverse problem; if only conditions (1.4) are known, this is the direct problem. 

Evaluating the one-sided Laplace transform to the wave equation (1 .l), taking the homogeneous initial data 
into account, we obtain an operator equation 

r&. (r, 8) + 2r-1fJT (r, 8) - 8%~~~~ (r, 8) = 0 

whose solution is 

F (r, 8) = r-l [cl (I) exp (-da) + cs (0) exp (da)] 

where s is the transform parameter. 
Let us assume that the boundary is moving in a medium with no boundaries; in accordance with condition 

(1.3), we define c(s) = f(s) ri (sp)-‘exp (sr&). Then the solution of the wave equation can be written as 

P (r, s) = p [se- q (r, O)], 5 (i, s) = 8 $ + 1) 
( 

‘(F’ ‘) 

f (8) exp _ s r,- r0 rl 
V(rvd= rp s 

( a 1 

Returning to source functions, we obtain the required functions taking the real-time delays into account. 
The values of the functions at any points are 

t 

P(r,t)=+f(&), u(r,t)% = $ f (El + s f (El dt, 
0 

t 

cp (r, f) = -$ 
S 

f(k)dt, &=t -+ 
0 

At the moving boundary 

p (R (th 4 = 

z.p,(,_ R(f;-ro)+ [~fWt]rcR(I)s 
0 

tS 1 f (‘) dt r=R(t) 
0 

(1.5) 

Calculations with formulas (1.6), when inverse problems are being dealt with, require a knowledge of R(t). 
The variation of the radius of the moving boundary may be determined as follows. It is known [6] that the 
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volume of a liquid flowing through a closed surface (47~~) is equal to the change in volume per unit time, i.e. 
dV/dt = 47rr*v(r, t)? where v is the second function in (1.5). Integrating from 0 to t and transferring to the 
moving boundary, we obtain a cubic equation: 

[R8 (t) - roal P 
3r1 

=2: [S + f (%I I& + s s f (E) dr dr]@(*) 
0 0 0 

In inverse problems the function~in (1.7) is known. 
An arbitrary function f can be approximated in various ways [3]. Let 

P (rl, t) = Ae-%ro (El), %r = t - y , 
0, t<T 

A, a = con&, fJ0 0 -z) = 
1, t,z 

(oa is the unit discontinuous function of zero order). Then in view of (lS)-( 1.7) we obtain the formulas 

P (T, t) = + Ae-=bo (%f! 

(1.7) 

(1.8) 

fRS ftf - ro”l P R(t) A 
3rl 

=---{l-e-~%)+$[% 
c1 

-$I -e+,] 
In the general case of boundaries whose motion is governed by arbitrary laws and an arbitrary functionf, the 

latter is conveniently approximated by a Lagrange polynomial of degree m: 

f I= 2 A,n%lm, Am = const (1.11) 

Throughout this note, unless otherwise stated, summation is performed over m from 0 to infinity. The 
number m of interpolation points (exact values of the function) may be as large as desired [7]. 

The sequence of calculations in solving inverse problems is as follows. Use formulas (1.7) and (1.10) to 
determine the change in the radius of the moving boundary, and formulas (1.6) and (1.9) to determine the 
values of the unknown functions on the boundary. The values of these functions at other points may then be 
determined by using (1.5) and (1.8). 

The solutions thus computed for the wave equation with moving boundaries, i.e. formulas (1, l)-(1.4)) may 
be used to describe the expansion of a sphere in a compressible medium. Here the function P(R (t), t) has to be 
computed taking into account the non-linear term of the Cauchy-Lagrange integral O.S~(P,~ [8]. Substitution of 
the solutions (1.5), (1.6), (1.8) and (1.9) into the wave equation makes its Ieft-hand side vanish; as Q-+ 30, these 
formulas reduce to known solutions for an incompressible medium. Indeed, differentiating Eq. (1.7) twice and 
letting a-+ m, we obtain the well-known formula P- PO = pr-‘(2Rk* + R’l?) for the point rl . They can be 
used to solve the direct and inverse problems. 

As to the cubic equation (1.7) and the similar equation (1.10) [and the third equation of (2.3) below], these 
can be solved, e.g. by successive approximations [3]. A good choice for the first approximation is the value 
computed as a-+= or for the preceding instant of time. The formulas possess favourable convergence 
properties and so one can compute R(t) to any desired accuracy. 

2. NON-LINEAR ADDITIONAL CONDITION 

Consider the condition 
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Using expansion (1.11) with conditions (1.5)-(1.7), we can write 

951 

(2.1) 

(2.2) 

(2.3) 

* tH (f)l t) RP (4 P 
rl 

2-p~Am~~‘+~-&~+l 

[R3 @I - so31 P =--L-&Em+l+ ); Aln R(t) 1 
3-1 (m j- 1) (m + 2) E”+a 

f = t _ R (“b- r. 

We will write condition (2.1) in the form 

The solution of the problem may be reduced to solving a single algebraic equation. We will compute A” when 
the solution, approximated by the Lagrange polynomial Aoa(&), IS a straight line at the point r = r, for time to. 
This is the time of arrival of the wave at the point rl . From (2.4) we obtain a quadratic equation for A,), the 

solution of which gives 

We enlarge the time interval by a certain quantity At and find the solution, approximated by a Lagrange 
polynomial A0 +A1 5, which passes through to and a second point t, = to + At. Then, by (2.1), 

P(n,td= A, + &f--a { [$(~,f- A& t a,~+~~~]~, 1 
cg = - 2rlBp (2.6) 

The quantity P is known by assumption and A0 is known from (2.5). Thus A, is found by solving the 
quadratic equation (2.6). 

Continuing in this way, we can find the necessary number of coefficients of the Lagrange polynomial. The 
formula for the mth coefficient will be 

1 
A,=-- 

(2CsCsC4 - &“) 
+ 

I 
1 (&scr - $,I”) 

I 

’ 
+ 

co - caca* 

cd -. 2 cad Cyzpl 1 

‘Ii 
(2.7) 

co = - P (rr. t) i -4, + A& -t . . . -t -$,,_lf~-l, 
1 

‘a = 2r& ’ 
El = t - r1 ; r. 

As we see, the solution of a problem with a non-linear additional condition (2.1), where the boundary is 
moving at an arbitrary velocity, has been reduced to computations with formulas of type (2.7). Knowing the 
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FIG. 1 

coefficients A,,, , we can then use (2.2), (2.3) to determine the unknown functions at the moving boundaries and 
at any other points, as well as the parameters of the motion of the boundary. 

The solutions of the inverse problem for the wave equation with non-linear conditions (2.1) in domains with 
moving boundaries may be used, e.g. to solve problems that arise when the behaviour of expanding cavities in 
compressible media has to be controlled [3]. 

3. EXAMPLE 

Consider the problem in Sec. 2. Figure 1 shows the results of computations, carried out by the method of 
characteristics [3, 91, for the system of equations of motion, continuity and state for iso-entropic processes in 
Tait’s form: 

VI - vvr + p-lP, = 0, pt + (Per + (v - 1) pu = 0, (P + B)I(P, + B) = (plp,Y (3.1) 

with the appropriate boundary and initial conditions (B and n are constants and u is the symmetry exponent). 
The law of expansion of the sphere is v(R(t), t) = 350exp(-103t), r0 = 10m3 m, the radius R(t) and the 
pressure at the moving boundary and at the point rl = 0.08 m in the wave zone are represented by curves 1, 2, 
3, respectively. 

Using formula (2.7) and successively determining the coefficients of the Lagrange polynomial, we first 
determine A0 , relying on the known values of P(rl, t) (curve 3) at p = 102 kgs2/m4, a = 1500 m/s, 
t = 52.7-55.7 x lo@ s, and then go on to find further coefficients A,,,: AC, = 49.46; Al = 3.56~ 104; 
A2 = 3.46 x lo’*; A3 = -6.355 x 1016. 

The other unknown functions are now determined using (2.2) and (2.3). The computed values of R(t) and 
P(R(t), t) are represented by solid circles and the values computed by the known formula P-PO = p(3/2 
A2 + R&) by open circles. Such results cannot be obtained by other methods; the method used in [l] is not 
easily applicable to inverse problems. 

The satisfactory agreement between the results of different computations indicates that the approach 
proposed above is indeed capable of dealing with this type of problem. 
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A NON-AXISYMMETRIC CONTACT PROBLEM IN THE CASE 
OF A NORMAL LOAD APPLIED OUTSIDE THE AREA OF 

CONTACT? 

V. I. MOSSAKOVSKI and YE. V. POSHIVALOVA 

Dnepropetrovsk 

(Received 11 July 1990) 

1. A FORMULA describing the effect of a load acting outside a circular stamp in a plane is known [ 11. Below we 
propose a novel approach to the study of the pressure under a non-axisymmetric plane stamp when normal 
forces are applied to the free surface of an elastic half-space. The approach includes the method, proposed by 
Mossakovskii, of reducing the three-dimensional problem of potential theory to a plane problem. The main 
merit of this method, as compared with that in [2] based on the Sommerfeld method, is the possibility of 
constructing effective numerical algorithms, since any subsequent approximation can be constructed inde- 
pndently of the preceding one, by adding some supplementary terms. The problem in question is reduced, in 
the final analysis, to a system of plane problems of potential theory whose boundary conditions contain 
trigonometric polynomials with unknown coefficients, which can be determined from the condition that the 
solution is regular within the area of contact. 

Let a normal force R be applied to the surface of an elastic half-space outside the area of contact at the point 
5, q. As a result, additional pressure and normal displacement occur under the stamp. 

We will assume that the normal displacement of the stamp W(p, a) is identical with the displacement of the 
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